Optimal Active Social Network De-anonymization Using Information Thresholds
نویسندگان
چکیده
In this paper, de-anonymizing internet users by actively querying their group memberships in social networks is considered. In this problem, an anonymous victim visits the attacker’s website, and the attacker uses the victim’s browser history to query her social media activity for the purpose of de-anonymization using the minimum number of queries. A stochastic model of the problem is considered where the attacker has partial prior knowledge of the group membership graph and receives noisy responses to its real-time queries. The victim’s identity is assumed to be chosen randomly based on a given distribution which models the users’ risk of visiting the malicious website. A de-anonymization algorithm is proposed which operates based on information thresholds and its performance both in the finite and asymptotically large social network regimes is analyzed. Furthermore, a converse result is provided which proves the optimality of the proposed attack strategy.
منابع مشابه
On Your Social Network De-anonymizablity: Quantification and Large Scale Evaluation with Seed Knowledge
In this paper, we conduct the first comprehensive quantification on the perfect de-anonymizability and partial deanonymizability of real world social networks with seed information in general scenarios, where a social network can follow an arbitrary distribution model. This quantification provides the theoretical foundation for existing structure based de-anonymization attacks (e.g., [1][2][3])...
متن کاملSocial Network De-Anonymization and Privacy Inference with Knowledge Graph Model
Social network data is widely shared, transferred and published for research purposes and business interests, but it has raised much concern on users’ privacy. Even though users’ identity information is always removed, attackers can still de-anonymize users with the help of auxiliary information. To protect against de-anonymization attack, various privacy protection techniques for social networ...
متن کاملSocial Network De-anonymization: More Adversarial Knowledge, More Users Re-Identified?
Following the trend of data trading and data publishing, many online social networks have enabled potentially sensitive data to be exchanged or shared on the web. As a result, users’ privacy could be exposed to malicious third parties since they are extremely vulnerable to de-anonymization attacks, i.e., the attacker links the anonymous nodes in the social network to their real identities with ...
متن کاملAnonymization and De-anonymization of Social Network Data
Adversary: Somebody who, whether intentionally or not, reveals sensitive, private information Adversarial model: Formal description of the unique characteristics of a particular adversary Attribute disclosure: A privacy breach wherein some descriptive attribute of somebody is revealed Identity disclosure: A privacy breach in which a presumably anonymous person is in fact identifiable k-P-anonym...
متن کاملPrivacy Leakage via De-anonymization and Aggregation in Heterogeneous Social Networks
Though representing a promising approach for personalization, targeting, and recommendation, aggregation of user profiles from multiple social networks will inevitably incur a serious privacy leakage issue. In this paper, we propose a Novel Heterogeneous De-anonymization Scheme (NHDS) aiming at de-anonymizing heterogeneous social networks. NHDS firstly leverages the network graph structure to s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1801.06498 شماره
صفحات -
تاریخ انتشار 2018